13 research outputs found

    A Self-Consistent Solution to the Nuclear Many-Body Problem at Finite Temperature

    Full text link
    The properties of symmetric nuclear matter are investigated within the Green's functions approach. We have implemented an iterative procedure allowing for a self-consistent evaluation of the single-particle and two-particle propagators. The in-medium scattering equation is solved for a realistic (non-separable) nucleon-nucleon interaction including both particle-particle and hole-hole propagation. The corresponding two-particle propagator is constructed explicitely from the single-particle spectral functions. Results are obtained for finite temperatures and an extrapolation to T=0 is presented.Comment: 11 pages 5 figure

    In medium T-matrix for superfluid nuclear matter

    Get PDF
    We study a generalized ladder resummation in the superfluid phase of the nuclear matter. The approach is based on a conserving generalization of the usual T-matrix approximation including also anomalous self-energies and propagators. The approximation here discussed is a generalization of the usual mean-field BCS approach and of the in medium T-matrix approximation in the normal phase. The numerical results in this work are obtained in the quasi-particle approximation. Properties of the resulting self-energy, superfluid gap and spectral functions are studied.Comment: 38 pages, 19 figures, Introduction rewritten, Refs. adde

    Nuclear Self-energy and Realistic Interactions

    Get PDF
    The structure of nucleon self-energy in nuclear matter is evaluated for various realistic models of the nucleon-nucleon (NN) interaction. Starting from the Brueckner-Hartree-Fock approximation without the usual angle-average approximation, the effects of hole-hole contributions and a self-consistent treatment within the framework of the Green function approach are investigated. Special attention is paid to the predictions for the spectral function originating from various models of the NN interaction which all yield an accurate fit for the NN phase shifts.Comment: 26 pages, 12 figure

    Realistic Model of the Nucleon Spectral Function in Few- and Many- Nucleon Systems

    Get PDF
    By analysing the high momentum features of the nucleon momentum distribution in light and complex nuclei, it is argued that the basic two-nucleon configurations generating the structure of the nucleon Spectral Function at high values of the nucleon momentum and removal energy, can be properly described by a factorised ansatz for the nuclear wave function, which leads to a nucleon Spectral Function in the form of a convolution integral involving the momentum distributions describing the relative and center-of-mass motion of a correlated nucleon-nucleon pair embedded in the medium. The Spectral Functions of 3He^3He and infinite nuclear matter resulting from the convolution formula and from many-body calculations are compared, and a very good agreement in a wide range of values of nucleon momentum and removal energy is found. Applications of the model to the analysis of inclusive and exclusive processes are presented, illustrating those features of the cross section which are sensitive to that part of the Spectral Function which is governed by short-range and tensor nucleon-nucleon correlations.Comment: 40 pages Latex , 16 ps figures available from the above e-mail address or from [email protected]

    Momentum and Energy Distributions of Nucleons in Finite Nuclei due to Short-Range Correlations

    Full text link
    The influence of short-range correlations on the momentum and energy distribution of nucleons in nuclei is evaluated assuming a realistic meson-exchange potential for the nucleon-nucleon interaction. Using the Green-function approach the calculations are performed directly for the finite nucleus 16^{16}O avoiding the local density approximation and its reference to studies of infinite nuclear matter. The nucleon-nucleon correlations induced by the short-range and tensor components of the interaction yield an enhancement of the momentum distribution at high momenta as compared to the Hartree-Fock description. These high-momentum components should be observed mainly in nucleon knockout reactions like (e,ep)(e,e'p) leaving the final nucleus in a state of high excitation energy. Our analysis also demonstrates that non-negligible contributions to the momentum distribution should be found in partial waves which are unoccupied in the simple shell-model. The treatment of correlations beyond the Brueckner-Hartree-Fock approximation also yields an improvement for the calculated ground-state properties.Comment: 12 pages RevTeX, 7 figures postscript files appende

    Momentum Distribution in Nuclear Matter and Finite Nuclei

    Get PDF
    A simple method is presented to evaluate the effects of short-range correlations on the momentum distribution of nucleons in nuclear matter within the framework of the Green's function approach. The method provides a very efficient representation of the single-particle Green's function for a correlated system. The reliability of this method is established by comparing its results to those obtained in more elaborate calculations. The sensitivity of the momentum distribution on the nucleon-nucleon interaction and the nuclear density is studied. The momentum distributions of nucleons in finite nuclei are derived from those in nuclear matter using a local-density approximation. These results are compared to those obtained directly for light nuclei like 16O^{16}O.Comment: 17 pages REVTeX, 10 figures ps files adde

    The Nucleon Spectral Function at Finite Temperature and the Onset of Superfluidity in Nuclear Matter

    Get PDF
    Nucleon selfenergies and spectral functions are calculated at the saturation density of symmetric nuclear matter at finite temperatures. In particular, the behaviour of these quantities at temperatures above and close to the critical temperature for the superfluid phase transition in nuclear matter is discussed. It is shown how the singularity in the thermodynamic T-matrix at the critical temperature for superfluidity (Thouless criterion) reflects in the selfenergy and correspondingly in the spectral function. The real part of the on-shell selfenergy (optical potential) shows an anomalous behaviour for momenta near the Fermi momentum and temperatures close to the critical temperature related to the pairing singularity in the imaginary part. For comparison the selfenergy derived from the K-matrix of Brueckner theory is also calculated. It is found, that there is no pairing singularity in the imaginary part of the selfenergy in this case, which is due to the neglect of hole-hole scattering in the K-matrix. From the selfenergy the spectral function and the occupation numbers for finite temperatures are calculated.Comment: LaTex, 23 pages, 21 PostScript figures included (uuencoded), uses prc.sty, aps.sty, revtex.sty, psfig.sty (last included

    Self-Consistent Quasi-Particle RPA for the Description of Superfluid Fermi Systems

    Get PDF
    Self-Consistent Quasi-Particle RPA (SCQRPA) is for the first time applied to a more level pairing case. Various filling situations and values for the coupling constant are considered. Very encouraging results in comparison with the exact solution of the model are obtained. The nature of the low lying mode in SCQRPA is identified. The strong reduction of the number fluctuation in SCQRPA vs BCS is pointed out. The transition from superfluidity to the normal fluid case is carefully investigated.Comment: 23 pages, 18 figures and 1 table, submitted to Phys. Rev.

    Phase shifts and in-medium cross sections for dressed nucleons in nuclear matter

    Get PDF
    The dressing of nucleons as embodied in single-particle spectral functions is incorporated in the description of nucleon-nucleon scattering in nuclear matter at a density corresponding to k F51.36 fm 21 . In order to clarify the new features associated with the complete off-shell behavior of the single-particle motion, results involving mean-field particles are also presented with special emphasis on the behavior of the phase shifts when bound pair states occur. Both the 1 S0 and 3 S1- 3 D1 channels exhibit this feature at the considered density for mean-field particles at zero temperature. An important tool to assess the effect of the dressing of the particles is the two-particle density of states. A sizable reduction with respect to the mean-field density of states is obtained. At 2e F this reduction corresponds to z kF 2 , where z kF is the strength of the quasiparticle pole at k F , and it can therefore be as large as 0.5. This reduction has significant consequences for the strength of pairing correlations both in the 3 S1- 3 D1 channel where it leads to a dramatic decrease of the attraction at the Fermi energy and for the 1 S0 channel which no longer shows a pairing signal. Phase shifts and cross sections for dressed particles are determined based on expressions which fold the effective interaction with the dressed but noninteracting two-particle spectral function. This folding procedure yields similar results to an ‘‘on-shell’’ prescription reminiscent of the result for free or mean-field particles, except for cross sections deep in the Fermi sea. Comparison of phase shifts and cross sections to the case of mean-field particles indicates that smaller phase shifts in an absolute sense and considerable reductions of the in-medium cross sections for dressed particles are obtained. It is shown that while in many cases these results imply a weakening of the effective interaction, this is not the case for 1 S0 interactions deep in the Fermi sea. [S0556-2813~99!06612-1
    corecore